

International Journal of Advances in Engineering and Management (IJAEM)

Volume 3, Issue 9 Sep 2021, pp: 931-937 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0309931937 Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 931

Signed 32-bit Vedic Multiplier Using

Urdhva Tiryagbhyam Sutra

Vishal G Sarashetti1, Dr.Kiran V2

1
Student, Department of ECE, RV College of Engineering, Bangalore, Karnataka

2
Associate Professor, Department of ECE, RV College of Engineering, Bangalore, Karnataka

Submitted: 05-09-2021 Revised: 12-09-2021 Accepted: 15-09-2021

ABSTRACT- This design mainly describes the

design of 16-bit Vedic multiplier and its

performance. Vedic calculations are the olden

scheme of Mathematics, which has a procedure of

mathematical calculations to compute the

multiplication of two 16-bit numbers. In this work

Urdhva Tiryagbhyam (vertical and crosswise)

Vedic sutra is used for multiplier, design which

provides better performance and consumes lesser

time for computation. The Urdhva Tiryagbhyam is

the finest sutra and universal one among additional

sutras and which represents the different

multiplication process compared to normal

multiplication. In this work, ripple carry adder is

used to compute the sum of partially generated

products. It reduces the complexity towards the

addition of unfinished products. The proposed

design is designed and implemented in Verilog

HDL. For HDL simulation, modelsim tool is used

and for circuit synthesis, Xilinx is used.

Index Terms – Verilog HDL, Urdhva

Tiryagbhyam.

I. INTRODUCTION
Rapid increase in digital devices the

processing of digital data which in the form of text

audio video or other form is needed in the much

faster way for which the multiplier is used as a

basic block, to increase the performance the

multiplier delay should be reduced.

The one way to make the faster

multiplication, we make use of Vedic multiplier

using urdhva triyaghyam sutra. Urdhva

Tiryagbhyam (vertical and crosswise) Vedic sutra

is used for multiplier design which provides better

performance and consumes lesser time for

computation. The Urdhva Tiryagbhyam is the

finest sutra and universal one among additional

sutras and which represents the different

multiplication process compared to normal

multiplication.

In this work, the multiplier utilizes the

Urdhva-Tiryakbhyam sutra for multiplication of

binary numbers. The major consideration of the

design is to improve the speed of multiplie.

II. LITERATURE SURVEY
Many researchers have developed

algorithms for multiplication using Vedic

multiplier. Realization of high-speed Vedic

multiplier by means of Vedic mathematics sutra

was discussed. They used Urdhva Tiryagbhyam

sutra for the design of the 8-bit multiplier ripple

carry adder is used to add the unfinished products

to obtain the resultant product. The result shows

multiplier utilizes 1us time to multiply the two 8-

bit numbers. Design of area and time delay

efficient multiplier to obtain better performance of

the multiplier is given. The result shows scheme

consumes 44.358 ns to produce the final product of

the given two 8-bit input data. In this work, Urdhva

Tiryagbhyam Vedic sutra used for multiplication of

two 8-bit binary numbers. Ripple carry adder is

used to produce the final product by adding

unfinished product[1].

A digital computer performs many

arithmetic operations which include addition,

subtraction, multiplication, division. In these

operations multiplication and division are achieved

by performing successive addition and subtraction

respectively for a specific number of times. Two

binary numbers can be multiplied using a circuit

called multiplier. It is built using adder circuits.

This circuit is also referred as binary multiplier.

The speed of a multiplier circuits totally depends

on the adders used. Different implementation of

adders is used in order to improve the power

consumption of the multiplier ripple carry adder is

one among them. In this design we have

International Journal of Advances in Engineering and Management (IJAEM)

Volume 3, Issue 9 Sep 2021, pp: 931-937 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0309931937 Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 932

implemented a Vedic multiplier using regular

ripple carry adder (RCA)[2].

The ancient Indian mathematics is also known as

Vedic mathematics and it is based on sixteen

principles or sutras. Vedic mathematics is form of

ancient calculation which was discovered by Sri

Bharati Krishna Tirthaji Maharaj. There are over

sixteen sutras namely Ekadhikina Purvena,

Nikhilam Navatashcaramam Dashatah, Urdhva

Tiryagbyham, Paaraavartya Yojayet are few of

them. Among the sixteen sutras urdhva triyaghyam

is the most widely used technique to implement

calculations for larger numbers using Vedic

mathematics, this technique can also be

implemented for digital signal processing

applications. Urdhva-tiryagbhyam the name itself

suggests that a calculation is performed vertically

and crosswise, this technique is used for

multiplication and division of large numbers. In

this design we have implemented a 4 bit to 16bit

Vedic multiplier using RCA[2].

Urdhva Tiryakbhyam This sutra is based

on “Vertically and Crosswise” technique. It makes

almost all the numeric computations faster and

easier. The advantage of multiplier based on this

sutra over the others is that with the increase in

number of bits, area and delay increase at a smaller

rate in comparison to others [3].

III. METHODOLOGY
A binary multiplier can be used in digital

electronics as a electronic circuit, such as in

computers to find the product of two binary

numbers. Carbon-copy of normal multiplication

technique is used by binary multiplier, the

multiplicand is multiplied with each bit of the

multiplier beginning from the least significant bit.

Two half adder (HA) modules can be used in order

to implement a 2-bit binary multiplier.

In 4 bit Vedic multiplier using urdhva triyaghyam

sutra, a multiplier of 2 bit is used to calculate

intermediate stage results, and the output is 4 bits.

(A3A2)(B3B2) using 2 bit multiplier generates

result: S33S32S31S30

(A3A2)(B1B0) using 2 bit multiplier generates

result: S23S22S21S20

(A1A0)(B3B2) using 2 bit multiplier generates

result: S13S12S11S10

(A1A0)(B1B0) using 2 bit multiplier generates

result: S03S02S01S00.

Figure 1. 4x4 Binary Multiplier

Figure 2. Modified 4 Bit Vedic Multiplier

The above figure represents the block

diagram of 4-bit Vedic multiplier, as shown in the

fig-2 there are four 2-bit Vedic multiplier and three

4-bit RCA and results will be of 8-bit.

International Journal of Advances in Engineering and Management (IJAEM)

Volume 3, Issue 9 Sep 2021, pp: 931-937 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0309931937 Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 933

Like this we can achieve 32-bit Vedic multiplier

using the four 16-bit Vedic multiplier and three 32-

bit RCA.

Figure 3. 32 Bit Vedic Multiplier

1) 32bit signed Vedic Multiplier

`timescale 1ns / 1ps

module vedic_32bit_mul_signed(p, a, b);

input [31:0] a,b;

output [63:0] p;

wire [31:0] t1,t2,t3,t4;

wire a1=0;

reg signedbit;

vedic_16bit_mul m1(.a(a[15:0]) , .b(b[15:0]) ,

.p(t1));

vedic_16bit_mul m2(.a({1'b0,a[30:16]}) ,

.b(b[15:0]) , .p(t2));

vedic_16bit_mul m3(.a(a[15:0]) ,

.b({1'b0,b[30:16]}) , .p(t3));

vedic_16bit_mul m4(.a({1'b0,a[30:16]}) ,

.b({1'b0,b[30:16]}) , .p(t4));

assign p[15:0]=t1[15:0];

wire [3:0] cout1;

wire [31:0] temp1,temp2,temp3;

parallel_32bit_adder r1(temp1, cout1[0],

{16'b0,t1[31:16]}, t2, 1'b0);

parallel_32bit_adder r2(temp2, cout1[1], temp1,

t3, 1'b0);

assign p[31:16] = temp2[15:0];

wire s,c1;

full_adder f1(s ,c1 ,cout1[0] ,cout1[1] , 1'b0);

parallel_32bit_adder

r3(temp3,cout1[2],{14'b0,c1,s,temp2[31:16]}, t4 ,

1'b0);

assign {a1,p[62:32]} = temp3;

always@(*)

begin

if(a[31]!=b[31])

begin

signedbit=1;

end

else

begin

signedbit=0;

end

end

assign p[63] = signedbit;

endmodule

2) 16bit Vedic Multiplier

`timescale 1ns / 1ps

module vedic_16bit_mul(p,a,b);

input [15:0] a,b;

output [31:0] p;

wire [15:0] t1,t2,t3,t4;

vedic_8bit_mul m1(.a(a[7:0]) , .b(b[7:0]) , .p(t1));

vedic_8bit_mul m2(.a(a[15:8]) , .b(b[7:0]) ,

.p(t2));

vedic_8bit_mul m3(.a(a[7:0]) , .b(b[15:8]) ,

.p(t3));

vedic_8bit_mul m4(.a(a[15:8]) , .b(b[15:8]) ,

.p(t4));

assign p[7:0]=t1[7:0];

wire [3:0] cout1;

wire [15:0] temp1,temp2,temp3;

International Journal of Advances in Engineering and Management (IJAEM)

Volume 3, Issue 9 Sep 2021, pp: 931-937 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0309931937 Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 934

parallel_16bit_adder r1(temp1, cout1[0],

{8'b0,t1[15:8]}, t2, 1'b0);

parallel_16bit_adder r2(temp2, cout1[1], temp1,

t3, 1'b0);

assign p[15:8] = temp2[7:0];

wire s,c1;

full_adder f1(s ,c1 ,cout1[0] ,cout1[1] , 1'b0);

parallel_16bit_adder

r3(temp3,cout1[2],{6'b0,c1,s,temp2[15:8]}, t4 ,

1'b0);

assign p[31:16] = temp3;

endmodule

3) 8bit Vedic Multiplier

 `timescale 1ns / 1ps

 module vedic_8bit_mul(p , a, b);

 input [7:0] a,b;

 output [15:0] p;

 wire [7:0] t1,t2,t3,t4;

 vedic_4bit_mul m1(.a(a[3:0]) , .b(b[3:0])

, .p(t1));

 vedic_4bit_mul m2(.a(a[7:4]) , .b(b[3:0])

, .p(t2));

 vedic_4bit_mul m3(.a(a[3:0]) , .b(b[7:4])

, .p(t3));

 vedic_4bit_mul m4(.a(a[7:4]) , .b(b[7:4])

, .p(t4));

 assign p[3:0]=t1[3:0];

 wire [3:0] cout1;

 wire [7:0] temp1,temp2,temp3;

 parallel_8bit_adder r1(temp1, cout1[0],

{4'b0,t1[7:4]}, t2, 1'b0);

 parallel_8bit_adder r2(temp2, cout1[1],

temp1, t3, 1'b0);

 assign p[7:4] = temp2[3:0];

 wire s,c1;

 full_adder f1(s ,c1 ,cout1[0] ,cout1[1] ,

1'b0);

 parallel_8bit_adder

r3(temp3,cout1[2],{2'b00,c1,s,temp2[7:4]}, t4 ,

1'b0);

 assign p[15:8] = temp3;

 endmodule

4) 4bit Vedic Multiplier

 module vedic_4bit_mul(p, a, b);

 input [3:0] a,b;

 output [7:0] p;

 wire [3:0] t1,t2,t3,t4;

 vedic_2bit_mul m1(.a(a[1:0]) , .b(b[1:0])

, .out(t1));

 vedic_2bit_mul m2(.a(a[3:2]) , .b(b[1:0])

, .out(t2));

 vedic_2bit_mul m3(.a(a[1:0]) , .b(b[3:2])

, .out(t3));

 vedic_2bit_mul m4(.a(a[3:2]) , .b(b[3:2])

, .out(t4));

 assign p[1:0]=t1[1:0];

 wire [3:0] cout1;

 wire [3:0] temp1,temp2,temp3;

 paraller_4bit_adder r1(temp1, cout1[0],

{2'b0,t1[3:2]}, t2, 1'b0);

 paraller_4bit_adder r2(temp2, cout1[1],

temp1, t3, 1'b0);

 assign p[3:2] = temp2[1:0];

 wire s,c1;

 full_adder f1(s ,c1 ,cout1[0] ,cout1[1] ,

1'b0);

 paraller_4bit_adder

r3(temp3,cout1[2],{c1,s,temp2[3:2]}, t4 , 1'b0);

 assign p[7:4] = temp3;

 endmodule

5) 2bit Vedic Multiplier

 module vedic_2bit_mul(a , b , out);

 input [1:0] a,b;

 output reg [3:0] out;

 always @(a or b)

 begin

 out[0] <= a[0] && b[0] ;

 out[1] <= (a[0] && b[1])^(a[1] && b[0]);

 out[2] <= (a[1]&& b[1])^((a[0] &&

b[1])&&(a[1] && b[0]));

 out[3] <= (a[1]&& b[1])&&((a[0] &&

b[1])&&(a[1] && b[0])) ;

 end

 endmodule

International Journal of Advances in Engineering and Management (IJAEM)

Volume 3, Issue 9 Sep 2021, pp: 931-937 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0309931937 Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 935

6) 32 bit Parallel Adder

 `timescale 1ns / 1ps

 module parallel_32bit_adder(sum , carry ,a , b

, cin);

 input cin;

 input [31:0] a,b;

 output [31:0] sum;

 output carry;

 wire temp;

 parallel_16bit_adder p1(sum[15:0], temp

, a[15:0] , b[15:0] , cin);

 parallel_16bit_adder p2(sum[31:16],

carry , a[31:16] , b[31:16] , temp);

 endmodule

7) 16 bit Parallel Adder

 module parallel_16bit_adder(sum, carry, a, b,

cin);

 input cin;

 input [15:0] a,b;

 output [15:0] sum;

 output carry;

 wire temp;

 parallel_8bit_adder p1(sum[7:0], temp ,

a[7:0] , b[7:0] , cin);

 parallel_8bit_adder p2(sum[15:8], carry ,

a[15:8] , b[15:8] , temp);

 endmodule

8) 8bit bit Parallel Adder

 module parallel_8bit_adder(sum, carry, a , b,

cin);

 input cin;

 input [7:0] a,b;

 output [7:0] sum;

 output carry;

 wire temp;

 paraller_4bit_adder p1(sum[3:0], temp ,

a[3:0] , b[3:0] , cin);

 paraller_4bit_adder p2(sum[7:4], carry ,

a[7:4] , b[7:4] , temp);

 endmodule

9) 4bit bit Parallel Adder

 module paraller_4bit_adder(sout , cout , a , b ,

cin);

 input [3:0] a,b;

 input cin;

 output [3:0] sout;

 output cout;

 wire [2:0]t;

 full_adder f1(sout[0], t[0] , a[0] , b[0]

,cin);

 full_adder f2(sout[1], t[1] , a[1] , b[1]

,t[0]);

 full_adder f3(sout[2], t[2] , a[2] , b[2]

,t[1]);

 full_adder f4(sout[3], cout , a[3] , b[3]

,t[2]);

 endmodule

10) Full Adder

 module full_adder(sum, carry , a , b , cin);

 input a,b,cin;

 output sum,carry;

 wire t1,t2;

 wire c1,c2;

 half_adder h1(t1,c1,a,b);

 half_adder h2(sum,c2,t1,cin) ;

 or r1 (carry, c2,c1);

 endmodule

11) Half Adder

 module half_adder(sum,carry , a , b);

 input a,b;

 output sum,carry;

 xor x1(sum,a,b);

 and a1(carry, a,b);

 endmodule

International Journal of Advances in Engineering and Management (IJAEM)

Volume 3, Issue 9 Sep 2021, pp: 931-937 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0309931937 Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 936

Figure 4. 32-bit signed multiplication

Figure 5. Design summary of 32-bit signed multiplication.

IV. CONCLUSION
The signed 32-bit Vedic Multiplier Vedic

Multiplier has been implemented using Urdhva

Tiryagbhyam Sutra.

It has observed that the time taken do the

multiplication operation of higher bits has been

reduced and provides better performance, and

consumes lesser power for computation by using

the Multiplier which is implemented based on

Urdhva Tiryagbhyam Sutra.

REFERENCES
[1]. CHANDRASHEKARA M N, ROHITH S.

“Design of 8 Bit Vedic Multiplier Using

Urdhva Tiryagbhyam Sutra With Modified

Carry Save Adder” 2019 4th International

Conference on Recent Trends on

Electronics, Information, Communication &

Technology (RTEICT-2019), MAY 17th &

18th 2019, Electronic ISBN:978-1-7281-

0630-4.

[2]. Y.Harshavardhan, S.Nagaraj, S.Jaahnavi,

T.Manasa Reddy. “Analysis of 8-bit Vedic

Multiplier using high speed CLA Adder”

Proceedings of the Second International

Conference on Innovative Mechanisms for

Industry Applications (ICIMIA 2020) IEEE

Xplore Part Number: CFP20K58-ART;

ISBN: 978-1-7281-4167-1.

[3]. Y. Bansal, C. Madhu and P. Kaur, "High

speed vedic multiplier designs-A review,"

2014 Recent Advances in Engineering and

Computational Sciences (RAECS),

Chandigarh, India, 2014, pp. 1-6, doi:

10.1109/RAECS.2014.6799502.

[4]. S. Z. H. Naqvi, "Design and simulation of

enhanced 64-bit Vedic multiplier," 2017

IEEE Jordan Conference on Applied

Electrical Engineering and Computing

Technologies (AEECT), Aqaba, Jordan,

2017, pp. 1-4, doi:

10.1109/AEECT.2017.8257751.

[5]. J. Miao and S. Li, "A novel implementation

of 4-bit carry look-ahead adder," 2017

International Conference on Electron

Devices and Solid-State Circuits (EDSSC),

Hsinchu, Taiwan, 2017, pp. 1-2, doi:

10.1109/EDSSC.2017.8126457.

[6]. M. Akila, C. Gowribala and S. M. Shaby,

"Implementation of high speed vedic

multiplier using modified adder," 2016

International Conference on Communication

and Signal Processing (ICCSP),

Melmaruvathur, India, 2016, pp. 2244-2248,

doi: 10.1109/ICCSP.2016.7754093.

[7]. M. B. Murugesh, S. Nagaraj, J. Jayasree and

G. V. K. Reddy, "Modified High Speed 32-

bit Vedic Multiplier Design and

Implementation," 2020 International

Conference on Electronics and Sustainable

Communication Systems (ICESC),

Coimbatore, India, 2020, pp. 929-932, doi:

10.1109/ICESC48915.2020.9155882.

[8]. G. R. Gokhale and S. R. Gokhale, "Design

International Journal of Advances in Engineering and Management (IJAEM)

Volume 3, Issue 9 Sep 2021, pp: 931-937 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0309931937 Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 937

of area and delay efficient Vedic multiplier

using Carry Select Adder," 2015

International Conference on Information

Processing (ICIP), Pune, India, 2015, pp.

295-300, doi:

10.1109/INFOP.2015.7489396.

[9]. G. C. Ram, Y. R. Lakshmanna, D. S. Rani

and K. B. Sindhuri, "Area efficient modified

vedic multiplier," 2016 International

Conference on Circuit, Power and

Computing Technologies (ICCPCT),

Nagercoil, India, 2016, pp. 1-5, doi:

10.1109/ICCPCT.2016.7530294.

[10]. S. P. Pohokar, R. S. Sisal, K. M. Gaikwad,

M. M. Patil and R. Borse, "Design and

implementation of 16 × 16 multiplier using

Vedic mathematics," 2015 International

Conference on Industrial Instrumentation

and Control (ICIC), Pune, India, 2015, pp.

1174-1177, doi: 10.1109/IIC.2015.7150925.

[11]. D. K. Kahar and H. Mehta, "High speed

vedic multiplier used vedic mathematics,"

2017 International Conference on Intelligent

Computing and Control Systems (ICICCS),

Madurai, India, 2017, pp. 356-359, doi:

10.1109/ICCONS.2017.8250742.

